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We explore the coherent transfer of electronic signatures from a strongly correlated, optically gated nano-
scale quantum dot to a weakly interacting, electrically backgated microscale channel. In this unique side-
coupled “T” geometry for transport, we predict a mechanism for detecting Rabi oscillations induced in the dot
through quantum, rather than electrostatic means. This detection shows up directly in the dc conductance-
voltage spectrum as a field-tunable split in the Fano lineshape arising due to interference between the dipole
coupled dot states and the channel continuum. The split is further modified by the Coulomb interactions within
the dot that influence the detuning of the Rabi oscillations. Furthermore, time resolving the signal we see clear
beats when the Rabi frequencies approach the intrinsic Bohr frequencies in the dot. Capturing these coupled
dynamics requires attention to memory effects and quantum interference in the channel as well as many-body
effects in the dot. We accomplish this coupling by combining a Fock-space master equation for the dot
dynamics with the phase-coherent, non-Markovian time-dependent nonequilibrium Green’s function transport
formalism in the channel through a properly evaluated self-energy and a Coulomb integral. The strength of the
interactions can further be modulated using a backgate that controls the degree of hybridization and charge

polarization at the transistor surface.
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Future electronic devices are likely to contain nanoscale
components ranging from random traps, defects and dopants,
to engineered memories, logic elements and sensors. For
practical reasons, these elements must interface with a larger
microsystem, such as contacts and substrates. The rapidly
increasing surface sensitivity will make ultimately scaled de-
vice properties strongly dependent on the dynamics and low-
frequency noise generated by these nanoscale components. '
The issue of how the nanodomains and microdomains “talk”
to each other lies at the very heart of the operation of tomor-
row’s electronics.

The dynamics of electrons in dots and channels are sig-
nificantly different due to the distinct energy scales involved.
Inside larger transport channels where electronic interactions
are screened, it is traditional to solve the one-electron
Schrodinger equation (Fig. 1, left) with nonequilibrium ther-
mal boundary conditions, treating electron-electron interac-
tions as a mean field. The consequent perturbative nonequi-
librium Green’s function formalism?? has been successful in
quantitatively describing current flow through systems as di-
verse as molecular wires, carbon nanotubes, silicon nano-
wires, and spintronic systems. The operating regime is often
described by the inequality Uy<<I", where U, is the single-
electron charging energy and I' is the level broadening. In
contrast, strong confinement of electrons in quantum dots
(Uy>T") amplifies their many-body interactions so that cur-
rent flow has to be described in terms of nonequilibrium
transitions between various many-body states (Fig. 1,
right).*~® The multielectron master equation operates in this
regime to satisfactorily explain experiments on molecular
quantum dots. The transition region is complicated, as there
is no obvious way to capture coherence and correlation
(wave and particle aspects) within the same formalism for an
open system due to the lack of a small parameter (the fine
structure constant of transport, Uy/T" being ~1).”

Efforts exist to describe both systems within the same
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formalism but are limited by approximations (e.g., elimina-
tion of Kondo correlations) to make such treatments trac-
table. However, to our knowledge, there has not been an
attempt to couple two systems belonging to these diverse
regimes—namely, channel electrons following wave evolu-
tion in Hilbert space and dot electrons following particle
evolution in Fock space; nor has there been a pressing mo-
tivation to do so. However, such a coupling between nano-
electrons and microelectrons becomes particularly important
for a side-coupled T geometry [Fig. 3(a)], involving ad-
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FIG. 1. (Color online) Theories for electron flow vary between
(a) perturbative NEGF approaches (Ref. 2), where a single electron
is added to or removed from a set of one-electron levels that incor-
porate interactions in mean-field and (b) multielectron master equa-
tions (Ref. 4) that take the entire electronic system between various
N-electron many-body states. The cartoon shows the 2 X2 Hilbert
space vs 4 X4 Fock space for two spins on a quantum dot with
orbital energy €, and Coulomb energy U,. I' represents the broad-
ening of the one-electron states (or transitions between many-
electron states) by coupling to the contacts, a channel, or the
environment.
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FIG. 2. (Color online) The NEGF approach consists of specify-
ing the channel through its Hamiltonian H and potential U while
capturing the contacts through self-energies X ,. Current is driven
by the unequal electrochemical potentials u, , in the contacts. Ex-
ternal factors influence the channel electrons through the charging
U, as well as through the scattering self-energy X While X is
traditionally calculated perturbatively, for a dot-channel coupled
system we can use many-body transport equations to calculate the
dot Green’s functions g, g" exactly, and use them subsequently to
obtain their scattering influence in 3.

sorbed dots that act as scattering states on the principle back-
gated transport channel. In particular, we find that through
the coupling of the optical writing on the dots with electronic
reading from the channel current, different physical mecha-
nisms emerge that have bearings on detection of single
charges in quantum computing. Specifically, we propose a
detection scheme for Rabi oscillations that is tunable and is
readable directly from the dc. Besides offering an exciting
novel way to detect states for quantum computing, the dot-
channel T junction provides an ideal system to test our cou-
pling of Fock space and Hilbert space transport formalisms.

In this paper, we (i) present a theoretical approach to ex-
plore the time-dependent interaction between a correlated
nanoscale quantum dot and a microscale backgated substrate
(Fig. 2). The many-electron dynamics of the dot operators
are solved directly from rate equations in their configuration
(Fock) space,* whence we extract their one-electron scatter-
ing self-energies that drive the simpler time-dependent non-
equilibrium Green’s function (TDNEGF) channel equations.

(a)

CHANNEL

(b)
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The scattering matrices g are thus calculated nonperturba-
tively by exact diagonalizing the many-body dot Hamiltonian
and projecting onto the channel one-electron subspace. (ii)
The coupling of the dot-channel transport modes creates en-
tirely novel signatures arising from the ac optical write but
detected through the dc current read. A dot coupled to a
channel is known to create prominent Fano signatures
through gate tunable quantum interference between parallel
transport channels involving the localized dot and delocal-
ized channel states.” By the incorporation of an added optical
gating with a monochromatic laser pulse resonant with the
dot level splittings, we can modulate the charge and spin
populations and coherences in the dot. This Rabi modulation
creates a split in the Fano spectrum [Figs. 3(b) and 4] rhat
can be tuned with the field strength (power of the laser
source). (iii) Many-body interactions within the dot further
detune this resonant split (Fig. 5), underscoring our ability to
couple interacting electrons with noninteracting and coupling
the Hilbert and Fock space descriptions. (iv) The charge
depletion/accumulation at the channel surface driven by a
back or side gate allows us to control the Coulomb and tun-
nel couplings between the dot and channel modes (Fig. 7).
Finally, (v) a time-resolved measurement shows prominent
beats (Fig. 6) in the output signal if the Bohr frequencies of
the dot approach the Rabi frequency, as in the case of a dot
with two Zeeman split spin states. This mechanism under-
scores the need for doing justice to non-Markovian processes
(memory) that we capture using the TDNEGF formalism.

I. FORMALISM: COUPLING FOCK SPACE
WITH HILBERT SPACE

Simulating the optical write electronic read process re-
quires a coupling of the Fock-space formalism for correlated
dot dynamics* and the TDNEGF formalism'? for weakly in-
teracting quantum channel transport. For a given many-body
dot Hamiltonian H;, we first solve for the annihilation opera-
tors ¢ ,(#) using the Heisenberg equation of motion and
well-known equal time anticommutation rules
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FIG. 3. (Color online) (a) Electronic detection of Rabi oscillations has relied on Pauli spin blockade between two serially coupled dots
(Ref. 8). In a side-coupled geometry (typical parameters listed in Fig. 7) where the dot does not lie on the channel electron’s path of
propagation, we observe (b) a split of the Fano lineshape proportional to the Rabi frequencies that are tuned by the strength (power) of the

incident ac field.
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FIG. 4. (Color online) The evolving Fano lineshape at three
different Rabi frequencies. Parameters: €,=0 eV, €=0.1 eV,
AE;=0.2 meV, y;=v=0.01 eV, 7,=0.25 eV, and V;=0.001 V.
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ik dei(t)

=[ci(1).H,],

{ci.cj(t")} = 5,01 -1"),

{ei®).c;(t)} =0, (1)

where [...,...] denotes the commutator and {...,...} denotes
the anticommutator. While this step can, in principle, be
solved exactly for an isolated dot using exact diagonaliza-
tion, coupling the resulting interacting electron system with
continuum states in an external channel or contact serves to
broaden these levels through a hybridization procedure that
creates a hierarchy of Green’s functions, requiring truncated
at a suitable point."! Assuming weak dot-channel coupling
and ignoring certain classes of excitations (e.g., Kondo),
such a truncation arises naturally, leading to approximate ex-
pressions for the annihilation operators (we will derive ex-
plicit forms shortly). Equation (8) is a particular example of
a treatment that includes interaction effects.

Once we have solved for ¢;(r), the dot dynamics can be
captured in terms of its one-electron retarded and correlation
Green’s functions’

giet") == i0(t = ") {{er).cT (YA,

gi(t1") = {cj(t")e(n)), )

where (...) denotes a thermal average and 6 is the Heaviside
step function. Furthermore, the scattering of the channel
states by the dot electrons can be captured using a self-
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FIG. 5. (Color online) Evolution of Fano lineshape in the presence of Rabi oscillations for varying degrees of intradot Coulomb
interactions that detunes the laser frequency with the dot level separation. For unmodified levels we get the Rabi split Fano shapes [(a) and
(b)] (Fig. 4) while for strong Coulomb coupling/detuning we register the single level that stays coupled to the channel [(e) and (f)].
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FIG. 6. (Color online) Schematic description of (a) dipolar CS
and (b) short-ranged QI scattering between the dot and channel
transport modes. (c) In the computed channel current for CS, the
Rabi oscillations manifest themselves in the frequency shifts
=2.5 MHz, 5MHz, and 10 MHz (in direction of arrow) (Ae
=3 meV). (d) In the QI case, Ae=0.2 wpeV (e.g., spin split levels in
a Zeeman field), Qz=2.5 MHz, €.,=0.01 eV (channel energy),
€;=0.1 eV, dot electrochemical potential u=0 eV, dot charging
energies U;=500 wpeV, U,=50 weV, contact broadenings y;=yp
=10 meV, dot-channel coupling 7,=0.25 eV, temperature 100
mK, and decay times 77=0.1 us and 7,=1 wus. As the Bohr fre-
quency p of the levels is comparable with the Rabi frequency,
beats are observed in the channel current.

(SR 11)] = dg®(1,1")], (3)

where 7=(7,7,) denotes the chemical coupling of the two dot
basis states with the channel surface atoms. Since g is ob-
tained by exact diagonalizing a many-body operator, % is
nonperturbative in the dot interaction potential and is suited
to handling correlation effects [e.g., Eq. (8)]. In principle, the
7s could include more complicated inelastic scattering con-
tributions such as from vibrations or spins in the dot coupled
to an external thermal bath. For illustrative purposes, how-
ever, we will include only the coherent dot-channel interac-
tions in 7, while treating the dot-bath interactions phenom-
enologically through additional relaxation times that we will
introduce later.

In addition to these self-energies, responsible for through-
bond scattering, quantum interference (QI mechanism) and
the exchange of charge between the dot and the channel,
there is a longer ranged Coulomb scattering (CS) mechanism
that can deplete and polarize channel charges, driven by
potential variations U,dn,(t)+U,n,(r), where the dot
charges n(1)=gi(¢t,t') and the Coulomb integrals U;
=q*[dx[dx' $}(x)pep(x")/ (4€|x—x"]). €, denotes the mate-
rial dielectric constant and ¢,,(x) denotes the wave function
in the channel depth direction x, dictated primarily by the
corresponding metal-oxide-semiconductor electrostatics. In a
simple approximation (e.g., extended Hiickel theory), the
bond coupling 7 has the form 7=7,[dx[dx’ ¢;(x) P.4(x") dic-
tated by the overlap of channel and dot basis states.
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The retarded and in-scattering self-energies X*" and
Coulomb potentials U are used to compute the transport cur-
rent in the channel. In order to do justice to non-Markovian
(memory)  effects, we use the full TDNEGF
formalism.!%12-16 We start with the retarded and correlation
channel Green’s functions using the Dyson-Keldysh equa-
tions

GR(1,1") = go(t.t") + f dtydtygo(t,1) 2R (1, 1,) GR(1,1"),

G”(t,t’):JdtldtzGR(t,tl)Ei"(tl,tz)GA(tz,t'), (4)

where g(z,1") is the Green’s function for the channel decou-
pled from the dot (but including Coulomb correlations), G*
=(GR), and IRM=3F"43X"4 3N For contacts with
broadenings I'; x(E) and Fermi functions f; z(E), we can
write. 37%(¢,¢') as the Fourier transforms of X}'p(E)
=L g(E)f r(E) and Ef,R(E)=—iFL,R(E)/2+H[FL,R(E)],
where H denotes the Hilbert transform. From the computed
Green’s functions and self-energies, we can now calculate

the time-dependent channel current (a=L,R) as

I(1) =[1,(1,0) = Ix(t,0)]/2,

I(t,t) = I2(t,t") = 19 (1,1"),

. 2 .
I(t.1') = % J dn, Tr[20(1,1))G*(1,,1") = H.c],

12‘“(z,z’)=?7i] f dn Tr{G"(1,1)X5(11,1) ~Hee]  (5)

with 34=(2R)" and H.c. the Hermitian conjugate.

Equations (2)—(5) couple the many-body quantum dynam-
ics of the dot with the transport properties of the channel.
While the individual equations exist in the literature for the
separate transport regimes, the novelty is using exact diago-
nalization of the dot states to compute the self-energy [Eq.
(3)], thereby coupling the Hilbert and Fock space descrip-
tions nonperturbatively. Even more significant is the fact that
the coupling of these formalisms yields results in the dot-
channel T geometry that have important implications on di-
rect electronic detection of Rabi oscillations. Our principle
challenge at this time is to actually set up the interacting
dot-channel-lead Hamiltonian and compute the dot operators
ci(t,1).

II. APPLICATION: DETECTING OPTICALLY WRITTEN
DOT DYNAMICS IN THE GATE TUNABLE
CHANNEL CURRENT

Laser irradiating a two-level dot generates a Hamiltonian
H;,=E(1)d,(cic,+H.c.) in the {¢; 5} dot basis. The transi-
tion dipole moment d,=¢/ dx | (x)x¢,(x) and the laser elec-
tric field E(t)=E, cos(w;t). Applying the Heisenberg equa-
tion for annihilation ¢; operators (i=1,2), defining the Rabi
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frequencies Qg=Ed, /i and Bohr frequencies w,;=(e,
—€;)/h, and assuming the laser frequency is near resonance
with the two-level system with a small detuning parameter
A=%(w;—w,;), we can invoke the rotating wave approxima-
tion (RWA). The algebra can be simplified into a compact,

elegant form
ci(t) ) = (C] )
(Cz(t) =v0) )’

U(t) = exp[— i(Hy — AA/2)t/h + iG - 1Q1/2], (6)

where H, is the isolated dot Hamiltonian with eigenvalues
€15, ¢ is the Pauli spin vector, while the unit vector 7
=(Qz,0,4)/Q with Q=(A2+02%)"2. The explicit solutions
for the c; operators then lead to the Green’s functions for the
dot using Eq. (2)

[gR(t,t)]=- ég(t -"HU(®) l_]+(tf)e—(t+t’)/]",

[¢"(t,1")] = U0)pU*(¢')e T, (7)

where p is the density matrix of the isolated dot with diago-
nal entries given by the equilibrium occupancies of the dot
states. The g’s in turn yield the scattering term X,,(¢,7') for
the QI mechanism and the charge polarization én for the CS
mechanism. Before we proceed further, let us discuss the
rationale behind our phenomenological treatment of environ-
mental fluctuations through the decay constants 77 ,.

III. APPROXIMATIONS: TREATMENT OF DEPHASING
AND INTRADOT INTERACTIONS

While the challenge of our formalism is the employment
of many-body dot Green’s functions [Eq. (2)] to drive the
one electron channel Green’s functions [Eq. (4)], our main
approximation at this stage is the use of the isolated dot
Green’s functions to compute its scattering influence 2.
While we can easily work around this limitation for weak
dot-channel coupling 7, the absence of significant interac-
tions in the channel (and our deliberate ignorance of Kondo
correlations) means that the influence of stronger coupling
can be easily incorporated, principally as a broadening I'; ,
of the states given by Fermi’s golden rule, I'; ;=27 ,|*py,
with p, being the known channel density of states. This
means that we can continue to use the isolated dot equations
while simply renormalizing the dot levels as € ,=¢,
—il';5/2 (any energy dependence of I';, would create an
additional shift in the energies given by a simple Hilbert
transform). What is harder to include is the broadening of the
dot states by coupling with the external environment, such as
a thermal bath, since that depends on microscopic details of
the underlying broadening mechanism. Lacking specific
knowledge of these environmental decoherences, we choose
to include them in Eq. (7) using a phenomenological decay
parameter 7, amounting to a diagonal relaxation time 7, and
an off-diagonal decoherence time 7. These terms are neces-
sary to capture the physics of the electrons entering and leav-
ing the dot.
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This inclusion in Eq. (7) as an exponential term can be
rigorously derived. One needs to start with the many-body
Hamiltonian coupling the dot with the environment, which
looks like H=eyc'c+3 ecici+Sp(mcte + T:C}:C) where ¢, is
the environmental degree of freedom and c is the dot vari-
able. The result looks like an open boundary Schrodinger
wave  equation  where the  self-energy  3(¢,1')
=3, |72 ="V and the source S(1)=3,7ci0e” %, If we
ignore the energy dependence of %, which is consistent with
a phenomenological description of the environmental de-
grees of freedom, we can show that c(r)=cye (0>
+#fdt’S(t’)e‘“fUJfE)(F”)/ﬁ. Using Eq. (2) we can thus calcu-
late the Green’s functions exactly, with the decaying expo-
nential terms. It is also straightforward to show that the
above ¢ operators with the exponents exactly satisfy the
equal time anticommutation relation.

The main strength of our model is the nonperturbative
evaluation of the scattering matrices and the resulting cou-
pling of the interacting dot response function with noninter-
acting transport equations in the underlying channel [Egs.
(1)=(3)]. We are thus completely flexible in our ability to
handle intradot interactions. For instance, we could directly
use exact diagonalization to evaluate our gs (e.g., using the
4 X 4 many-body states in Fig. 2 right). Alternately, we can
build interactions into the quantum dot response functions by
standard diagrammatic techniques,!' for larger multilevel
dots where exact diagonalization may prove impractical. For
example, we can include an on-site Hubbard term U, on the
dot by evolving the dot Green’s functions with an equation
of motion technique and then truncating the hierarchy of dot
equations within a “local moment” approximation,'! yielding
a probability weighted result

&) = (1= (ngle Mgl 0.
+ <l’l§(l")>g§’n(t’t’)e—iUd(t—z/) )

for a given spin o and its inverse &. This Coulomb interac-
tion includes correlation effects such as self-interaction cor-
rection so that the effect on a specific spin state depends the
occupancy of the other spin states. Higher order terms can
generate further interactions, such as high-temperature
Kondo correlations,!! possibly even extended to multiple
orbitals.!” We will now see how the combination of memory
effects, coherence and correlation effects adds incredible
richness to the spectrum of the dot scattering states as de-
tected in the channel current.

IV. RESULTS: DETECTING RABI OSCILLATIONS
THROUGH STATIC (d¢) CHANNEL CONDUCTANCE

In the past, electronic detection of Rabi oscillations relied
on Pauli spin blockade between two serially coupled dots
and its effect on the time-dependent current.® In a parallel
transport geometry, however, the channel electrons are not
Pauli blocked by the side coupling, as the dot does not lie on
the channel electron’s path of propagation. The coupling of
paths can occur through the long-ranged Coulomb terms U
sitting in g, that deplete the channel electrons [Fig. 6(a)] and

085324-5



VASUDEVAN, WALCZAK, AND GHOSH

generate time-resolved transport signatures [Fig. 6(c)]
reminiscent® of spin blockade. However, a much more inter-
esting mechanism avails itself in this specific side-coupled T
geometry, where lateral transport paths through the channel
continua and the localized dot states interfere quantum me-
chanically through direct chemical bonding between the dot
and the channel surface atoms [Fig. 6(b)], generating a
phase-coherent Fano interference directly in the dc current
characteristics. In other words, we can use a side-coupled
geometry to detect Rabi oscillations directly from the dc con-
ductance spectrum.

While Fano signatures are common in quantum dots,” in
the dual optical-electronic gated system described here the
Fano lineshape gets convolved with the Rabi signatures im-
pressed upon the dot by the ac field. Expanding and simpli-
fying Eq. (7), we see that the Rabi-Fano interaction mani-
fests itself directly in the dc spectrum as a field-tunable split
in the Fano lineshape (Fig. 4).

We can readily include Coulomb correlations in our
model, say by using Eq. (8). Self-interaction correction will
make one level repel the other through a mutual Coulomb
potential. If the laser frequency is resonantly tuned to the
bare level splitting, increasing Coulomb corrections will in-
crease the detuning A. As Fig. 5 suggests, the detuning will
spread out the spectral weights of the Rabi-split Fano. The
spectral weights of the two Rabi split levels (= for i=1,2,
respectively) and thereby the change in channel spectral
function can be obtained to yield the Rabi modulated Fano
lineshape. This can be done numerically using the Crank-
Nicholson technique to solve the time-dependent evolution
of the wave functions exactly. We confirm that this matches
the analytical results we obtain invoking the small A RWA.
To do this we work out the Green’s function for a combined
dot-channel system coupled through 7, and then partition the
matrix to extract the effect of the coupling on the channel
electrons.!® We can thus find an expression for the Rabi
modulated channel Green’s function with finite detuning,
along with the corresponding spectral function A which de-
termines its density of states and thus its conductance spec-
trum

1-A/Q
E—e+iy; = h(A+Q)/2
1+A/Q
+E—el+i7t A(A-Q)/2°

gilE) =

2
(g+&) ] o)

5A=gch[l - §2+1
where g, is the bare channel Green’s function, g is the phase
angle of the channel, and & is the phase angle of the dot,'®
extracted from the expression above for g;;. The increasing
detuning will lead ultimately to the bare Fano lineshapes
between the dot and channel states unmodified by the Rabi
oscillations. The result shown in Fig. 5 required the incorpo-
ration of correlation effects (in this case, self-interaction cor-
rection translated to an overall detuning), into a traditional
NEGF treatment of conductance and Fano interference.
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V. RESULTS: DETECTING RABI OSCILLATIONS IN
THE TIME-DEPENDENT CHANNEL CURRENT

Further physics is unearthed by looking at the time-
resolved current. The usual Rabi modulation of the current
can be captured using Coulomb Blockade [Figs. 6(a) and
6(c)]. For a serially coupled dot array, the modulation of the
current arose from the distinct potentials acting on different
spins (spin blockade). In the Coulomb blockade analog like-
wise, it is critical to have different Coulomb repulsions from
the different levels. The Coulomb repulsive term can be writ-
ten as U,én;+U,on,=U,,n,,+AUSu, where U,,=(U,
+U,)/2 and én,,=(n,+ n,)/2 are the averages while AU
=(U,-U,) is the differential charging energy between the
dot levels and Su=(dn;— én,) is the net dipole on the dot. A
Rabi induced reorganization of the charges on the dot simply
alters the dipole moment that can only scatter the channel if
there is a differential charging AU on the dot. In contrast,
direct Coulomb scattering by the average Coulomb potential
U,, can only occur if charge actually enters or leaves the
channel through the 37 terms (i.e., effectively, the broaden-
ings I').

The usefulness of the side-coupled geometry arises from
the employment of through bond coupling and interference
between parallel transport channels as an alternate means for
transmitting the Rabi signatures to the channel current.
While this shows up as a field-tunable split in the dc conduc-
tance (Fig. 4), they also manifest themselves in the time-
resolved current as field-tunable beats [Fig. 6(d)], amplified
when the Rabi frequency approaches the intrinsic Bohr fre-
quencies in the dot to which the laser is resonantly tuned.
The origins of the dc and ac Rabi signatures however are
patently different—the spectral modifications in Fig. 4 arise
from g® while the temporal beats and memory effects in Fig.
6 arise from g". Expanding Eq. (7), we find that the sum of
the diagonal terms g, +g5, in the expression for 3™ is inde-
pendent of the average time index T=(z+¢")/2 so that any
time modulation arises essentially out of the off diagonal
sum g7,+g5,. In the absence of memory effects (i.e., setting
t;=t—t'=0), this sum is proportional to [sin QT sin(e,
—&)T]|(f,—f,) which generates the observed beats between
the Rabi and Bohr frequencies. Non-Markovian corrections
built into the TDNEGF formula provide an additive correc-
tion proportional to [sin Qz,/2 cos(e;— &) T](f,+1>).

Dipolar Rabi frequencies are typically much smaller than
electronic state spacings but the two do approach each other
in their spintronic analog where the tunnel coupling is re-
placed by the Heisenberg exchange between the spin bits and
the channel electrons!® with the Zeeman splitting of spin
states often ending up being comparable to the electron spin
resonance frequency. Capturing these beats correctly requires
careful attention to memory effects that our TDNEGF model
incorporates.

VI. PARAMETER DEPENDENCE AND TUNABILITY

Electronic readout of qubits is crucial for integrating
quantum-computing paradigms with a solid-state architecture
compatible with present day microelectronics. It also pro-
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FIG. 7. (Color online) Top: band lineup and eigenstates for dot-
channel geometry [shown in Fig. 3(a)] for three representative gate
voltages at V,=0 V (blue line), 2 V (black line), 3.2 V (red line)
Parameters: €,=1.7, 7,=25 ueV (Ref. 21). The backgate to the
right of the figure can be used to tune the electron density and wave
function at the channel surface, thereby controlling both the Cou-
lomb integral U; (bottom left) and the bond coupling parameters 7
(bottom right) between the channel surface and the lowest elec-
tronic state of the dot.

vides the possibility of real-time detection of the dot’s mo-
lecular “fingerprints.”?® One can engineer the couplings at a
molecular level through synthetic chemistry or by gate tun-
ing. The use of multiple gates would allow us to indepen-
dently scan the location of the channel/dot states and also
control the dot-channel coupling.

Figure 7 shows our ability to tune the charging energy
U,6n,; and the coupling 7 for the dot ground state, in other
words, controlling the parameters for CS and QI, respec-
tively. The former depends ultimately on the charge density
at the interface while tuning the dot-channel wave function
overlap further modulates U, and 7,. By using a backgate,
we can deplete or enhance the surface electron density and
also control the wave function overlap through a Stark shift
of the channel states. In our example, we considered a 10 nm
dot coupled to a 12-nm-deep channel sitting on a 20 nm
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oxide through a 2 nm interfacial bond (e.g., a linker mol-
ecule). As the backgate voltage is cranked up, the overall
band-diagram shifts due to the overall electrostatics given by
the individual component geometries and dielectric con-
stants. The smooth curves show the ground-state eigenfunc-
tions in each well, and these get polarized as the potentials
tilt, generating a Stark shift that alters the overlap between
¢en(x) and ¢7(x). The altered overlap changes the U, and 7,
parameters, calculated using the simplified expressions de-
scribed in the paragraphs preceding Eq. (4).

VII. SUMMARY

In a side-coupled geometry involving noninteracting
channel electrons scattering off of interacting dot electrons,
we predict a slew of signatures including a Rabi induced
splitting of the dc Fano lineshape, as well as beats in the
time-dependent current due to the interaction between Rabi
and Bohr frequencies. While this is potentially significant for
the electronic detection of single charges, capturing this
physics correctly required a marriage of formalisms that has
not been attempted thus far, to the best of our knowledge.
Specifically, we needed memory effects within the TDNEGF
formalism to capture the beats in the time-dependent current
(Fig. 6). We needed to pay attention to quantum coherence in
the channel G matrices to capture the Fano lineshapes arising
out of quantum interference between dot and channel trans-
port states (Fig. 4). Finally, we also needed to do justice to
many-body correlation physics in the dot g terms to capture
the physics of self-interaction correction that generates a de-
tuning on the Fano lineshape (Fig. 5). The resulting plots
bear rich spectral signatures of the dot-channel interaction,
and provide a viable route toward optically writing informa-
tion onto the dot electrons and transducing their dynamics
electronically into the gate tunable channel current.
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